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Abstract: This paper offers an ab initio perspective on local electronic structure in molecules. The energy of a single determi
nant wave function is minimized, but each orbital is expanded using only those basis functions local to a particular region. This 
procedure permits rigorous quantum mechanical evaluation of the properties of isolated bonds or functional groups. Each local 
orbital satisfies a Hartree-Fock-like secular equation within its own basis space. The orbital eigenvalue satisfies Koopmans' 
theorem and affords an ab initio definition of the orbital energy used in PMO models of functional group interaction. The re
gional orbital model offers definite computational advantages over traditional molecular orbital theory. Because each local 
orbital is determined by a reduced dimension secular equation, unwieldy Fock matrix diagonalizations are avoided for large 
molecules. Further, the formalism shows that an accurate wave function for a region of a molecule can in principle be deter
mined without calculation of a wave function for the entire molecule. Ab initio calculations for prototype molecules show that 
the local orbital constraint entails little loss of accuracy. Energies obtained from local orbital determinants and molecular or
bital determinants agree within a tolerance of several kilocalories per mole. The eigenvalue for each type of bond or lone pair 
is highly transferable from molecule to molecule. 

I. Introduction 

A significant issue in contemporary chemistry is the theo
retical description of local regions within molecules—both in 
isolation and in interaction with other parts of the molecule. 
Present interest in this topic stands in reaction to a fundamental 
paradox within quantum chemistry. On the one hand, chem
istry is primarily a property of local regions within molecules. 
The principal features of conformation and reactivity are 
identified with chemical bonds or functional groups, in isolation 
or interaction. Nevertheless, traditional quantum mechanical 
methods require a wave function for the entire molecule, even 
if much of that information is irrelevant. This paper offers one 
step toward the resolution of the paradox. It is shown that 
Hartree-Fock wave functions for local regions of molecules 
can be obtained without sacrifice of quantum mechanical 
rigor. 

These same tensions are apparent in selection of quantum 
mechanical models for chemical problems. Ab initio molecular 
orbital theory predicts many chemical properties with quan
titative accuracy, but does not lend itself to simple chemical 
models for these properties. In contrast to ab initio theory, the 
perturbative molecular orbital (PMO) method and its variants' 
have qualitatively explained trends in conformation and re
activity for a wide variety of organic molecules. Despite their 
lack of rigor, PMO models are significant because they match 
chemical intuition: the behavior of molecular orbitals is as
cribed to interactions between pairs of chemical bonds. Fukui,2 

Woodward and Hoffmann,3 and Salem4 have pioneered with 
their analysis of chemical reactivity in terms of interactions 
between regional orbitals. More recently, Epiotis,5 Hehre, 
Pople, and Schleyer,6 Salem,7 and Hoffmann et al.8 have used 
PMO models to rationalize the conformational preferences of 
numerous organic molecules. Heilbronner9 has used photo-
electron spectra to parameterize a PMO Hamiltonian and has 
thereby accounted for substituent effects on photoelectron 
spectra. Finally, the burgeoning literature of transition metal 
chemistry has predominantly adopted a PMO approach to 
electronic structure. Bonding in transition metal complexes 
is understood via correlation diagrams which describe the in
termixing of metal and ligand orbitals.10 

The intuitive appeal of PMO models has been established, 
but their credibility is still controversial. Conclusions derived 
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from a PMO approach are critically sensitive to numerical 
values of bond energies and matrix elements for orbital inter
action, but there is little agreement on which numbers should 
be used. This paper indicates how these ambiguities can be 
resolved in an ab initio context. A single determinant wave 
function is energy optimized, subject to the constraint that each 
orbital is local to a particular bond. This procedure permits 
rigorous specification of bond energies and matrix elements 
needed by PMO theory. 

The present work presumes that it is legitimate to discuss 
the quantum mechanics of an isolated region in a molecule. 
This question has been affirmatively resolved in a paper by 
Mazziotti, Parr, and Simons," and in a series of papers by 
Bader and Srebrenick.12 If a molecule is partitioned into re
gions defined by saddle points in the electron density 

Vp(r) • n(r) = O (1.1) 

each such region satisfies the virial theorem and is quantum 
mechanically separable from its environment. The density 
gradient criterion affords a strict spatial separation of molec
ular fragments, but is difficult to implement. This paper, in 
contrast, shows that meaningful molecular subunits can be 
defined by simple partitioning of the LCAO basis space. 

A general theory of regional Hartree-Fock orbitals was 
formulated by Adams and Gilbert.'3 The key step in Adams-
Gilbert theory is projection of the molecular Hartree-Fock 
equations onto the Hilbert space spanned by regional orbitals. 
As modified by Matsuoka,14 the Adams-Gilbert equations 
are 

(1 - PFP + Pt WiP1)X1 = (Xi (1.2) 

F is the Fock matrix, P is a projection operator for the space 
of occupied orbitals, and W1 is a one-electron operator which 
is diagonal in the subspace which contains orbital X1. The 
Adams-Gilbert equations have been extensively applied,15 but 
suffer from ambiguity in the definition of the regional operators 
Wi. The regional orbital equations derived in this paper are 
compatible with the Adams-Gilbert equations, but the present 
method is preferable for two reasons. First, the energy mini
mization condition leads to a unique prescription for the re
gional operators W1: 

Wi = PiFP1 (1.3) 

In eq 1.3, P, is the projection operator for occupied orbitals in 
the /th region. A second advantage of the present approach is 
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reduced dimensionality. The one-electron orbitals local to a 
particular region are expanded using a subset of the complete 
LCAO basis, and the final variational equations only involve 
these basis functions. 

There have been several other studies of regional electronic 
structure, but they are distinct from the present approach. 
Peters,16 for instance, has shown how localized orbitals may 
be directly determined from noncanonical Hartree-Fock 
equations. In that formulation, each localized orbital is an ei-
genstate of a distinct non-Hermitian secular equation, and the 
secular equations have the same dimensions as the full basis 
set. More recently, simulated ab initio procedures17 have 
employed the direct transfer of Fock matrix elements from one 
molecule to another. The idea of a transferrable regional 
Hamiltonian is implicit in such procedures as these. Finally, 
Whangbo et al.,'8 Morokuma et al.,19 ;.nd Payne20 have in
dependently suggested that orbitals local to a particular region 
could be chosen by diagonalizing an appropriate block within 
the Fock matrix. These methods are all unsatisfactory, since 
variational stability requires that the Fock operator must be 
projected onto the basis space of the particular region. Ex
traction of a block from within the Fock matrix is only accurate 
if the basis set is orthogonal. 

Localized orbitals21 provide yet another context for recon
ciliation of quantum mechanical rigor with traditional chem
ical concepts. There is no energetic penalty for the localized 
orbital description since the localized orbitals are defined by 
a unitary transformation of occupied molecular orbitals. 
Nonetheless, localized orbital analysis of bonds and bond in
teractions is beset by some critical weaknesses. First, the ex
pense of a localized orbital calculation greatly exceeds the cost 
of an ordinary molecular orbital calculation. Second, even 
though this problem can be surmounted through transfer of 
localized orbitals from small molecules to larger molecules,22 

such transfers are still quite controversial. The transferred 
orbitals are not self-consistent and must be reorthogonalized. 
Only minimal knowledge is available concerning the sensitivity 
of bond properties to transfer vs. in situ calculation of localized 
orbitals. Finally, localized orbitals do not define a strictly re
gional quantum chemistry and their interpretation is ambig
uous. This ambiguity arises because localized orbital tails 
extend throughout the molecule, and these tails have a major 
influence on properties of chemical interest.22 

The local orbital approach taken in this paper specifically 
avoids each of the stated weaknesses of localized molecular 
orbital theory. The interpretative ambiguities caused by orbital 
tails are avoided because each one-electron orbital is expanded 
on a regional basis subset. The local orbitals are not required 
to be orthogonal, and so should be more transferable than lo
calized molecular orbitals. The local orbitals are directly cal
culated in lieu of a canonical molecular orbital wave function, 
and are obtained far more easily than localized molecular or
bitals. But computational simplicity does not have an adverse 
effect on molecular energy. Test calculations on small organic 
molecules (see Section III) demonstrate that a determinant 
of local orbitals is energetically competitive with traditional 
molecular orbital theory. This observation is in accord with the 
work of Levy et al.,23 who recently found that truncation of 
localized molecular orbital tails has negligible effect on elec
tronic energy. The local orbital wave function employed herein 
is the variationally best set of truncated one-electron orbitals, 
and so must be lower in energy than wave functions derived 
from truncation of localized molecular orbitals. 

The key concept in this paper is variational optimization of 
a single determinant wave function, subject to the constraint 
that each one-electron orbital is expanded using a subset of the 
basis functions. This idea of different basis sets for different 
orbitals has been proposed in two other contexts. Silverstone 
et al.24 have investigated the use of nested basis sets in atomic 

Hartree-Fock theory, and have obtained variational equations 
equivalent to those which are derived here. However, Silver-
stone et al. restricted their theory to orthogonal one-electron 
orbitals, whereas no orthogonality constraints are imposed in 
the present approach. Von Niessen's molecules-in-molecules 
method25 describes certain bonds by transfer of localized or
bitals and variationally optimizes remaining bond orbitals 
using a restricted basis set. Our analysis is different because 
all local orbitals are variationally optimized; none is transferred 
from a different molecule. Further, due to Von Niessen's 
inexact treatment of orbital orthogonality, the projected Fock 
operator of molecules-in-molecules theory is an approximate 
version of the effective Fock operator which we employ. 

The present work is distinct from all previous uses of bond 
orbital wave functions. Consider, for example, the work of 
Sovers, Kern, Pitzer, and Karplus.26 Their calculations on 
ethane and methanol employ bond orbitals which are linear 
combinations of idealized valence hyids. The minimum energy 
attained with such a wave function is a few tenths hartree 
above the MO-SCF energy obtained from the same basis set. 
The present work is distinct because each bond orbital is var
iationally optimized within the full basis space of the two 
bonded atoms. No assumptions are made about idealized hy
brid orbitals. The present approach leads directly to that bond 
orbital determinant which has lowest energy, and it is shown 
in Section III that the energy gap between bond orbital and 
MO-SCF wave functions is reduced to a few hundredths 
hartree. This is an order of magnitude improvement over the 
work of Sovers et al. 

Formal aspects of the theory are developed in Section II, and 
illustrative results for small organic molecules are presented 
in Section III. It is found that the energy of a local orbital de
terminant lies only a few kilocarories/mole above the energy 
obtained from a conventional molecular orbital wave func
tion. 

II. Theoretical Development 
A. Outline of Method. Conventional molecular orbital theory 

is derived by minimizing the energy of a single determinant of 
one-electron orbitals. If each molecular orbital is written as 
a linear combination of atomic basis functions, optimization 
of the wave function generates the Hartree-Fock-Roothan 
equations. 

Our concern in this paper is with variational optimization 
of bond orbitals. We shall assume, as in molecular orbital 
theory, that the wave function is a single determinant of one-
electron orbitals. But unlike what is done in molecular orbital 
theory, we impose the constraint that only a few functions of 
the basis set contribute to a particular one-electron orbital. 
Thus, a bond orbital is a one-electron orbital which is expanded 
using only those basis functions associated with a particular 
pair of atoms. In certain electron-deficient or unsaturated 
species we may wish to relax this constraint so that some bond 
orbitals extend over three centers. The bond orbital theory 
presented in this paper is a variant of molecular orbital theory, 
with the constraint that most of the basis expansion coefficients 
are zero. 

Conventional molecular orbital theory constrains the mo
lecular orbital to be orthonormal, but we shall not make such 
an assumption. It would clearly be computationally advanta
geous to choose the orbitals to be orthogonal, since variational 
equations derived from a determinant of orthogonal orbitals 
are much simpler than variational equations for nonorthogonal 
orbitals. But there are nonetheless compelling reasons for use 
of nonorthogonal orbitals. First, for any basis set of moderate 
size, we might not be able to choose bond orbitals to be or
thogonal without violating our prior constraints on the LCAO 
coefficient matrix. This will surely be the case if the number 
of basis functions which contribute to a bond orbital is less than 
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the number of other orbitals. Our second objection is that 
orthogonality constraints stand in opposition to the variation 
principle, since LCAO coefficients are kept from assuming 
those values which would minimize molecular energy. Finally, 
a determinantal wave function constructed from nonorthogonal 
orbitals is equivalent to a determinant in which these orbitals 
have been orthogonalized within their own linear space. Orbital 
orthogonality has little to do with physical necessity, but rather 
is a dispensable computational convenience. 

We shall find that each bond orbital satisfies an eigenvalue 
equation of reduced dimension. It is well known that Har-
tree-Fock molecular orbital theory leads to an eigenvalue 
equation 

F4> = S4>e (D 
in which the Fock matrix F corresponds to an effective one-
electron Hamiltonian and 5 is the overlap matrix of basis 
functions. Each column of 4> contains basis expansion coeffi
cients for a particular molecular orbital and 6 is a diagonal 
matrix of orbital eigenvalues. We let jk be the vector of those 
coefficients which are not constrained to be zero in bond orbital 
Xk- It will be shown that 7^ satisfies an eigenvalue equation 
of form 

Fy k = Sy k( (2) 

where F and S are obtained in the following manner. We let 
Qk denote the projection operator for that part of the occupied 
bond orbital space which is orthogonal to bond orbital Xk, and 
form the matrix = (1 —_Qk)F(\ — Qk')- The reduced di
mension matrices F and 5 are defined by eliminating from F 
and S all rows and columns which correspond to basis functions 
that do not participate in bond orbital Xk-

B. Variation of Energy for Nonorthogonal Orbitals. We wish 
to choose bond orbitals X], Xi, . . . Xn so as to minimize the 
energy expectation value of the single determinantal wave 
function 

* = 
V(2/V) 

del\XiaX^. . .XnaXnt (3) 

Although we shall consider only closed shell systems, our re
sults can be directly generalized to the open shell case. The 
bond orbitals X, are not assumed to be orthonormal, but in fact 
have overlap matrix 

<7,7= J-d3r*,.*(r)A)(r) (4) 

We are free to scale each bond orbital to unit norm, but such 
a choice has the consequence that ^ is no longer normalized 
to 1. Instead, following Slater27 and Lowdin,28 we find 

Jdr ,^2^*^ - (det a)2 (5) 

In carrying out the variation it is not necessary to place any 
constraints on the norm of * . The energy expectation value 

<£) = (V\H\V)/(y\V) (6) 

does not depend on the norm of ^ , so those bond orbitals which 
optimize <£") do not have to reproduce a preselected norm for 

The electronic energy for nonorthogonal orbitals may be 
straightforwardly derived from matrix elements discussed by 
Slater,26 Lowdin,27 and McWeeny and Sutcliffe.28 For the 
reader's convenience we include the derivation as an Appendix 
to this paper. The final energy expression is 

(E) =2Y.h 

+ E Tji-
ijkl 

ijuji 

'a Ik ['RhM-H^N (7) 

where Ay is a matrix element of the one-electron Hamiltonian 
and (ij\ \/ri2\kl) is the usual electron repulsion integral. 

hij = ( Xi I h I Xj• > 

(ij — kl) = fdT,dT2X/*(l)xv(-l) — x**(2)x/(2) 
\ rn I r]2 

We now rewrite this energy expression in terms of the bond 
orbital coefficient matrix. Expand each bond orbital X, in 
terms of the atomic basis functions 4>\ • • • 4>m 

Xi(r) = Z Q</>,(r) (8) 

The matrix C is rectangular, m X n, and only has as many 
columns as there are occupied bond orbitals. Many elements 
in each column of C will be zero, corresponding to our as
sumption that only a few basis functions contribute to each 
bond orbital. The bond orbital overlap matrix a can be ex
pressed in terms of the basis function overlap matrix 5 

(9) 

where 

a = CSC 

Ss,= / d 3 r ^ * ( r ) 0 , ( r ) (10) 

Substitution of eq 8 and eq 9 into eq 7 affords the desired en
ergy expression 

m 
{E) = 2Z[C(CSC)-'C}tshs, 

s,t 

m 

+ E [C(CSC)-^C]ts[C(CSC)-'C],u 

X 2 1st (H^h)-(H^h), do 
Variation of the bond orbital coefficient matrix generates 

a corresponding variation in the energy expectation value. 

5(E) = 2Z8[C(C'SC)-lC>]tsFsl (12 ) 

The usual definition of the Fock matrix has been employed in 
eq 12, specifically, 

Fst = hst+Z [ C ( O S C ) - 1 C U U ( J f I H , ; ) - (sc\ut)\ (13) 
UV 

The constraint that certain elements of C remain zero is 
introduced via Lagrange multipliers. If coefficient Cv/, is 
constrained to be zero throughout the variation, 5Csk ~ O 
and 

2T.H3ks'(5Csk) + (5C)ks'0sk}=O 
sk 

(14) 

If a coefficient Csk is to be free to vary, the corresponding 
Lagrange multipliers must be identically zero. But nonzero 
multipliers /3sk correspond to cases Csk = O. 

C. Solution of the Variational Equations. The optimum bond 
orbitals are those which minimize the energy expectation value, 
subject to the constraint indicated in eq 14. We take 5(E) from 
eq 12 and obtain 

O = ES[C(CSC) - 1 C' ] , , / : : , , 

- L Wks'SCsk + (5C)ks'l3sk) (15) 
sk 

To carry out the variation 5[C(CSC)-1C] we need to know 
how to take the variation of (CSC)-[. For any invertible 
matrix M, 5M~l = - A / - " ( S M ) A / - ' . Hence, 

5 [C(CSC)-1C]15 

= [(I -C(CSC)-1CS)(SC)(CSC)-1C]1S 

+ [ C ( C 5 C ) - ' ( 5 C ) ( 1 - 5 " C ( C S C ) - 1 C ) ] , , (16) 
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The second term of eq 16 is exactly the transpose of the first 
term. We may therefore separate eq 15 into two equivalent 
parts, each of which is the transpose of the other. We obtain, 
after some rearrangement, 

uk 
0 = L (SC')*„ £ [1 -SC(CSQ-1O]UsFs, 

X [ C ( C ' S C ) - ' ] , A - / 3 „ * (17) 

The variations (5C')uk which appear in eq 17 may now be 
considered to be arbitrary, and we may equate the terms which 
appear in brackets. 

(1 - SCiC'SQ-^OFCiC'SC)^ = 0 (18) 

There are two formal steps which permit simplification of eq 
18. The leftmost factor in eq 18 is related to the closed shell 
densitv matrix 

D = C(C1SC)-IC' (19) 

The rightmost factor may be removed by a suitable orthogo-
nalization of the local orbitals {JV,-}. There is a transformation 
Wk which orthogonalizes the occupied local orbitals by mixing 
them with one another, yet leaves the orbital Xk invariant. The 
coefficient matrix for orthogonalized orbitals is 

C, = CWk 

Substitution of eq 19 and 20 into 18 yields 

(1 - SD)FCk = (3(Wk<)-] 

(20) 

(21 

since, by hypothesis, Ck'SCk = 1. 
Further simplification occurs if we isolate a particular or

bital Xk, which has coefficient vector Tk. This vector corre
sponds to column k of the general coefficient matrices C or Ck. 
Because Wk leaves the &th column of C unchanged, it must 
have the structure 

Wk-

t 
0 

1 

0 

1 

IP 
(22) 

and (Wk')-1 has the same structure. Hence, (WV)-1 leaves 
the kth column of (S unchanged. Isolation of this column on 
both sides of eq 21 gives 

E [(I -SD)F]lsCsk = P. tk (23) 

The dimensionality of eq 24 can be reduced. Because Xk is 
a local orbital most of the expansion coefficients CSk are zero, 
and corresponding columns sof(\ — SD)Fcan be eliminated. 
Similarly, the Lagrange multipler 13,k = 0 if coefficient C,k T^ 
0 (see eq 14). Define the reduced coefficient vector yk by 
eliminating all elements of Tk which are constrained to be zero, 
and eliminate corresponding rows and columns from (1 — 
SD)F. Then, 

[(I - S D ) F ] r e m = 0 (24) 

There are still two problems which preclude immediate use 
of eq 24. First, it is not an eigenvalue equation since the oper
ator (1 — SD)F depends on yk through D. Second, the matrix 
(1 - SD)F is not Hermitian. Each of these difficulties is easily 
resolved. The implicit dependence of D on jk is compensated 
by adding STk(Tk)'FTk to each side of eq 24. The quantity 

(Tk)'FTk is some scalar ek, 
suits: 

and an eigenvalue equation re-

[(I - SD + Srk(Tk)')FUdyk = Sredyktk (25) 

The factor which multiplies F from the left may also be in
serted on the right. This is possible because SD, acting to the 
left, is a projection operator for the space of occupied orbitals. 
In particular, yk'(SD)Ted = yk

l and, in consequence, 

[\-SD + Srk(Tk)'}red'yk = yk (26) 

Define the projection operator 

Qk = 1 -DS+ Tk(Tk)'S (27) 

It follows from eq 25 and 26 that 

{Qk'FQk)red7k = Sred7*«* (28) 

This is the final working equation. The local orbital coeffi
cients must be determined by a double iteration procedure. For 
a given Fock matrix, the projector Qk depends on coefficients 
of orbitals other than yk, and must be iterated to self-consis
tency. The Fock operator also has an implicit dependence on 
the orbital coefficients and so must be made self-consistent. 

D. Relationship to Adams-Gilbert Formalism. The 
Adams-Gilbert equations for regional Hartree-Fock orbitals 
bear a close resemblance to the formalism developed in this 
paper, and this relationship is now examined more closely. It 
is especially convenient to begin with Matsuoka's14 modifi
cation of the Adams-Gilbert equation: 

(F-P*FP + Pk*WPk)\Xk) = ek\Xk) (29) 

Here, P is a projection operator for the space of occupied or
bitals X\ . .. Xn, and Pk is a projector for the subspace asso
ciated with orbitals Xk \ • • -Xkm. The matrix W is undefined, 
except for the constraint that it must be diagonal in each 
subspace. This ambiguity in W has been one of the major 
drawbacks to practical implementation of the Adams-Gilbert 
equations, but we now show how this ambiguity can be re
solved. 

The projection operators employed by Matsuoka are defined 
by 

M M 

Pk= H Y. \Xki)(aTed~l)ki,kj(Xj\ for subgroup k (30) 

P = ZlXk)OkI-HXi] 
U 

(3D 

where a is the orbital overlap matrix, a^i = (Xi\Xk). 
It is straightforward to reconcile our approach with the 

modified Adams-Gilbert equation (29). Equation 28 may be 
written in the projection notation as 

( 1 - P* + Pk*)F(\ -P +Pk)\Xk) = tk\Xk) (32) 

In view of the identities ]Xk) = Pk\Xk) = P\Xk), this equa
tion may be rearranged as 

(F - P±FP + Pk*FPk)\Xk) = tk\Sk) (33) 

This is identical with eq 29. But our procedure demonstrates 
that the choice W=Fcorresponds to variational optimization 
of total energy. 

E. Evaluation of Ionization Potentials. Koopman's theorem 
does hold for the local orbital determinant. This is so because 
all other orbitals may be orthogonalized to any particular local 
orbital without changing either that orbital or its eigenvalue. 
The density matrix is then separable into contributions from 
that orbital and from all other orbitals. The Koopmans' theo
rem proof then carries through as for canonical Hartree-Fock 
theory. The energy required to ionize an electron from a local 
orbital is equal to its eigenvalue! 
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Table I. Total Energies from Molecular Orbital and Local Orbital 
Wave Functions 

Molecular orbital" Local orbital Difference, 
Molecule 

CH4 
NH3 
H2O 
C2H6 
(staggered) 
C2H6 
(eclipsed) 
CH3NH2 
(staggered) 
CH3NH2 
(eclipsed) 
CH3OH 
(staggered) 
CH3OH 
(eclipsed) 

energy, au 

-40.1369 
-56.0983 
-75.9032 
-79.1158 

-79.1114 

-95.0650 

-95.0619 

-114.8672 

-114.8653 

energy, au 

-40.1298 
-56.0869 
-75.8879 
-79.0942 

-79.0913 

-95.0337 

-95.0347 

-114.8311 

-114.8291 

kcal 

4.5 
7.1 
9.6 

13.5 

12.6 

19.6 

17.0 

22.6 

22.7 

From ref 32. 

III. Illustrative Application 
In order to establish the practical value of this local orbital 

model several issues must be resolved. First, there is the 
question of accuracy. How closely does a determinant of local 
orbitals reproduce the energy of a molecular orbital wave 
function? Owing to the severe restraints on LCAO coefficients, 
the minimum energy cannot be as low as the energy attained 
in conventional molecular orbital theory. Nonetheless, the 
accuracy is competitive. The second issue is transferability. If 
local orbitals are identified with particular bonds or lone pairs, 
how much variation is there from molecule to molecule? Third, 
conformational energies provide a very sensitive test of the local 
orbital model. It is well established that rotational barriers can 
be calculated within the Hartree-Fock molecular orbital ap
proximation.30 Are local orbital determinants equally reli
able? 

Local orbital wave functions have been determined for a 
representative sample of molecules: methane, ammonia, water, 
and staggered and eclipsed conformers of ethane, methyl-
amine, and methanol. The 4-31 G basis set was chosen,3' and 
integral evaluation was done with Gaussian 70 routines. In 
order to facilitate comparison with 4-31 G molecular orbital 
wave functions, the molecular geometries obtained by Pople 
et al.32 were adopted for the present calculations. The local 
orbital model does not offer fresh insights into the electronic 
structure of these particular molecules, which have already 
been studied to exhaustion. Rather, these molecules, as rep
resentative prototypes, provide a context for evaluation of the 
local orbital theory. 

The regional orbitals have been chosen so as to correspond 
to bond pairs, lone pairs, or inner shell electrons. The orbital 
for a bond pair is expanded using valence basis functions as
sociated with the two bonded atoms; no other basis functions 
contribute. Inner shell and lone pair orbitals are restricted to 
the basis space of a particular atom. In eq 28, the lowest energy 
eigenvector is the inner shell orbital, and the eigenvectors with 
next lowest energy are identified with lone pairs if they are 
present. 

Table I compares total energies from local orbital and mo
lecular orbital wave functions. It is clear that the local orbital 
model works exceedingly well. The energy expectation values 
obtained from local orbital and molecular orbital wave func
tions differ by only a few kilocalories/mole. This small dif
ference is largely due to omission of inner shell basis functions 
from the bond orbital basis set. The variation in energy between 
local orbital and molecular orbital wave functions is no greater 

Table II. Comparison of Rotational Barrier Heights (kcal/mol) 

Molecular orbital Local orbital 
Molecule wave function wave function 

Ethane 2.77 1.82 
Methylamine 1.94 -0.63 
Methanol 1.19 1.26 

than the basis set dependence of molecular orbital energies, 
so the two approaches are in fact comparable in accuracy. 

Nonetheless, it appears that the accuracy of our local orbital 
wave functions may not be sufficient for reliable prediction of 
rotational barrier heights. Table II contrasts the rotational 
barrier heights obtained from local orbital and molecular or
bital wave functions. The local orbital barrier height for 
methanol is in exact agreement with the molecular orbital 
result, and the rotational barrier of ethane is qualitatively re
produced. But the methylamine barrier has the wrong sign! 
Sovers, et al.26 also employed a bond orbital wave function, and 
their rotational barrier heights for ethane and methanol are 
in reasonable agreement with our own. They did not report a 
calculation for methylamine. 

To understand why rotational barriers derived from local 
orbitals could be ill behaved we turn to several contemporary 
models. CNDO and INDO studies34 have shown that inter
ference terms between vicinal charge distributions dominate 
the barrier. The same idea has been confirmed at the ab initio 
level, where it was shown that the leading terms in the barrier 
are proportional to vicinial overlap integrals.35 From yet an
other perspective, Christiansen and Palke36 and Levy, Nee, 
and Parr37 have demonstrated that vicinial orthogonality is 
important for an accurate description of rotational barriers. 
Most recently, Weinhold and Brunck38 have presented evi
dence that mixing of local bond orbitals with vicinal antibond 
orbitals is critical to the rotational barrier mechanism. Each 
of these contemporary models leads to the same conclusion: 
vicinal derealization of electrons is essential to rotational 
barriers. The local orbital theory, as developed in this paper, 
explicitly excludes vicinal derealization, so it is not surprising 
that rotational barriers can be ill behaved. 

Local orbital transferability can be assessed through com
parison of local orbital eigenvalues for different molecules. This 
information is summarized in Table III and Figure 1. The local 
orbital eigenvalue is the expectation value of the Fock operator 
for an electron in that orbital, and thus provides a sensitive 
measure of orbital shape and the external field. It is seen that 
each orbital type spans a distinct range of energies. Eigenvalues 
which correspond to CH, NH, and OH bonds vary no more 
than a few hundredths of an atomic unit. Because the lone pairs 
do not participate in bonding, their eigenvalues are sharply 
defined, and have maximum range of one-hundredth atomic 
unit. We emphasize that this study is only a prototype, but our 
results show that each type of bond or lone pair is characterized 
by a unique and transferable range of eigenvalues. 

Several features of the orbital eigenvalues deserve special 
attention. First, it is significant that the two lone pairs of 
oxygen are inequivalent. In both methanol and water, one long 
pair lies in a pure p orbital and has TT symmetry. The other lone 
pair is a directed sp hybrid which lies in the plane of the other 
bonds to oxygen. This is an ab initio result, and is not the 
consequence of a priori constraints. The lone pairs, by defini
tion, correspond to eigenfunctions of the Fock operator after 
it is projected onto the basis space of the oxygen atom. 

The orbital eigenvalues do reflect changes in nuclear charge 
and bond environment. As the nuclear charge on atom X in
creases, the eigenvalue of an XH bond pair drops steeply— 
from -0.88 au (av) for CH bonds to -1.92 au (av) for OH 
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Table III. Energy Eigenvalues for Local Orbitals (au) 

Molecule 

CH4 

C2H6(S) 
C2H6 (e) 
NH 1 

CHjNH 2 (S) 

CH3NH2 (e) 

H2O 
CH3OH (s) 

CH3OH (e) 

CH 

-0 .843 
-0.853 
-0.853 

-0 .892" 
2(-0.868) 

-0 .870" 
2(-0.884) 

-0 .876" 
2(-0.906) 

- 0 . 9 1 1 " 
2(-0.893) 

NH 

-1.249 
-1 .232 

-1.315 

OH 

-1.935 
-1.918 

-1 .923 

N: 

-0.550 
-0.544 

-0.540 

<rO: 

-0.994 
-1.003 

-0.997 

TTO: 

-0.476 
-0.479 

-0.479 

' Only two of the CH bonds are equivalent by symmetry. 

1.6 -

- 1.8-

-2.0 

- 0 .4 -

- 0.6-

5 - 0 8 -
< 

- 1.0 -
UJ 

- i - 1.2 -
< 
> 
Cu - 1.4 -
O 

#°» 
- ^ N # 

• H c^^ 

O M M 

Figure 1. Range of eigenvalues for each type of local orbital. 

bonds. The CH bonds in methylamine and methanol rotate in 
an anisotropic field. The CH bond eigenvalue is more positive 
if the dihedral angle with a vicinal lone pair is small. This 
confirms our intuition that lone pairs are more repulsive than 
bond pairs. The CH bond eigenvalues for methylamine and 
methanol are about 1 eV more negative than CH bond eigen
values in methane or ethane since the more positive nuclei are 
less easily shielded by their electrons. 

IV. Significance of the Regional Orbital Model 
This paper has presented a Hartree-Fock theory appropriate 

for local regions of molecules. In contrast to conventional 
molecular orbital theory, each one-electron orbital is expanded 
using only those basis functions associated with a particular 
region. This constraint has several consequences, all of which 
are advantageous for interpretation or computation. 

A significant challenge is posed for photoelectron spec
troscopy since the local orbital eigenvalues satisfy Koopmans' 
theorem. The local orbital eigenvalue is equal in magnitude 
to the energy required for vertical ionization from that orbital. 
This fact raises a very important physical question: How local 
is the ionization process? The local orbital eigenvalue spectrum 
differs from the molecular orbital eigenvalue spectrum, so 
which set of eigenvalues is in better agreement with experi
mental ionization potentials? The local orbital ionization po
tentials also offer a useful index of nucleophilic reactivity. The 

most nucleophilic electron pairs are those which are most 
weakly bound. 

The orbital eigenvalue is the energy expectation value for 
an electron confined to the local orbital. Calculations on pro
totype molecules indicate that these eigenvalues are highly 
transferable, in corroboration of chemical intuition. Our 
present results provide motivation for additional investigation 
of local orbital transferability. It is important to examine ki
netic energy expectation values, as they provide a very sensitive 
measure of orbital shape. It will also be important to test direct 
transfer of local orbitals from small molecule wave functions 
to determinants for large molecules. 

The orbital eigenvalues discussed in this paper should not 
be confused with thermodynamic bond enthalpies. The latter 
quantity is a bond dissociation energy, and cannot be under
stood apart from inclusion of electron correlation. Nonetheless, 
the local orbital determinant discussed here does provide an 
excellent framework for a theory of correlated pairs. 

The regional orbital model provides a rigorous foundation 
for PMO theories of functional group interaction. The regional 
orbital eigenvalue is an ab initio equivalent to the reference 
energies used in orbital correlation diagrams. We have seen 
that these eigenvalues are highly transferable, and that the 
eigenvalues for each type of bond or lone pair span a distinct 
range. Transformation of the Fock matrix onto a basis space 
of bonds and antibonds permits ab initio evaluation of the 
matrix elements for interaction of bonds and antibonds with 
one another. 

The regional model has distinct computational advantages 
for large molecules. Electronic structure of a particular region 
is completely determined by projection of the full Fock oper
ator onto the basis set associated with the region. This means 
that accurate information about the electron structure of a 
particular region or functional group can in principle be ob
tained without calculation of an equally accurate wave func
tion for the whole molecule. A crude wave function outside the 
region will determine the projection operator needed in eq 28, 
and multipole expansions may be used to estimate long-range 
contributions to the local Fock operator. Characterization of 
such approximations is critical to future work. 

The only grounds for pessimism is the unreliability of ro
tational barriers calculated from a bond orbital determinant. 
This difficulty probably arises from absence of vicinal mixing 
of the local bonding and antibonding manifolds. But here too 
there is hope and a challenge to subsequent research. In mol
ecules larger than those studied here, the description of internal 
rotation should improve significantly if regional orbitals extend 
over atoms vicinal to the particular bond. It is important to 
establish how much localization can in fact be attained without 
sacrifice of conformational energy. 
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Appendix 

Derivation of Energy Expression for Nonorthogonal Orbitals. 
We consider a determinantal wave function 

^ = ( ( 2 « ) ! ) - ' / 2 d e t ( X l X 2 . . . X 2 „ ) (Al) 

The orbitals %i a r e nonorthogonal spin orbitals with overlap 
matrix 

S1J= J M T 1 ^ ( I ) A J ( I ) (A2) 

The wave function ^ is normalized so that (ty\ V) = det S, and 
the energy expectation value is 

(E) = (det S)" 
< * 

In In I 

EMO + E - v (A3) 

In eq A3, h(i) is the one-electron Hamiltonian for electron /, 
and 1/7/, is the electron repulsion of electrons i and j . 

To get the matrix elements of one and two electron operators 
we follow Slater27 and Lowdin28 and define the matrices Ww 

and W{2\ as follows: W^(i\j) is the matrix formed from S 
when the /th row andy'th column are deleted; WW>(i,k\j,1) is 
the matrix formed from S- when the /th and fcth rows andy'th 
and /th columns are deleted. 

We obtain 

(E) = (det S)" 
2n 
Z h,j{-

+ 
1 2« 2« Zn In I \ 

Z Z Uj — kl) ( 
i*kjtl\ /"12 / 

I)'+''det \W\i\j) 

[y+J+k+i det WU\i,k\j,l) (A4) 

In eq A4, h/j is the matrix element of the one electron Hamil
tonian and (ij\ \/r\2\kl) is the usual electron repulsion inte
gral: 

(u -L */) kl) = SdT^T2X1H])Xj(I)- Xk*{2)X,{2) 
f \ 2 

(A5) 

The expression in eq A4 may be considerably simplified via 
Jacobi's ratio theorem, as has been discussed by McWeeny and 
Sutcliffe.29 According to that theorem, 

det W^(i\j) = ( - l ) '+ / (det S) (S- 1 ) ; , 

det W™(i,k\j,l) = ( - l ) / + ; + * + ' ( d e t S ) 

X [ (S- ' ) ;v (5- ' ) /* ~ (S-])jk(S->)„] 

Substitution of eq A7 and eq A6 into eq A4 affords 
1 2« 2n 

(A6) 

(A7) 

2« 
(E) =ZhIJSj 

Ij 
W-1Ji + -ZZ [(S-

2 i*k ; * / 

- ( S - % ( S -

l)ji(S-l),k 

('̂ H (A8) 

The equation above is completely general, but we now spe
cialize to closed shells. We assume that the first 7V orbitals have 
a spin, and are paired with the succeeding N orbitals, which 
have /3 spin. The overlap matrix S becomes block diagonal 

a S = 

The matrix a is the overlap matrix between spin orbitals with 
like spin. Because S is block diagonal, eq A8 simplifies as 

(E) = 2Zh1JCTj1-' + Z °ji-
i.j ijkl 

Oik 

H^H-H^N (A9) 

If the orbitals X, happen to be orthonormal we immediately 
recover the usual Hartree-Fock energy expression: 

(£>ort = 2 Z hH 
i 

+ S( 2 ( ' 
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The acid-base chemistry of the cation-complexing agent 
1,4,7,10-tetraazacyclododecane, (HNCH2CH2^ (cyclen),2-3 

is of interest because of the possibility of fast intramolecular 
proton transfer. We wish to report the results of a kinetic study 
by dynamic NMR,4 which confirms this possibility, as well as 
acid dissociation constants. 

pflia Measurements. Pure crystalline cyclen tetrahydro-
chloride3 served as starting material. The acid dissociation 
scheme for this substrate in aqueous solution is shown in Figure 
1. Values of pA^ and pK4, listed in that figure, were obtained 
by potentiometric titration at 0.017 M substrate concentration 
and have been corrected to zero ionic strength, using the 
Debye-Huckel formula: log 7, = -0.509Z1-

2Z1^Z(I + /1/2) (7/. 
= molar activity coefficient and z, = charge number of /th 
solute species; / = ionic strength). 

pÂ 2 was determined with a precision of better than 0.1 unit 
by measurement of the CH2 vs. H2O NMR chemical shift as 
a function of pH in the range 1-3, using the CH3 proton res
onance of either acetone (0.1 M) or f-BuNH3

+ (0.1 M) as 
internal standard.5 These measurements were made at 0.12 
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M substrate concentration. Because of the high ionic strength 
(~0.6 M), it was not deemed practical to correct pÂ 2 to zero 
ionic strength. 

Electrostatic Repulsions. Our notation for molecular species 
and sites of protonation is indicated in Figure 1. p£3 and pKt, 
for the acid dissociation steps A2 ^ A, ^ B are similar in 
magnitude to the stepwise pKa values63 for +H3N(CH2)S 
NH3

+, where the nitrogen atoms are likewise separated by a 
five-atom chain. Electrostatic repulsion between the NH3

+ 

groups lowers pKa \ of this compound by about 0.4 pÂ  unit; we 
would expect a similar electrostatic interaction between pos
itive charges on Ni and N7. The much greater electrostatic 
interaction between positive charges on Ni and N4 may be 
estimated from stepwise pKa values6b for the cyclic diamines 
piperazine (1,4-diazacyclohexane), where it amounts to 3.6 
pK units, or 1,4-diazacycloheptane, where it amounts to 3.0 
pK units. Adopting an average value of ~3.3 units, we expect 
a total electrostatic contribution to pK2 of 6.6 units (7.0 units 
in A3, less 0.4 unit in A2), compared to an electrostatic con
tribution to pÂ 3 of 0.4 unit. Thus pK2 - pK3 should be -6.2 
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(/ = 0.6); p/̂ 3 = 9.60 (/ = 0); p/C4 = 10.53 (/ = 0). For the diprotonated species, the equilibrium ratio [1,7-diprotiocyclen]/ 
[ 1,4-diprotiocyclen] is estimated as 1 /400. Bifunctional proton transfer with water participation is fast. For 1,7-diprotiocyclen 
-» 1,4-diprotiocyclen, k\ = 3.3 X 104 s- '; for 1-protiocyclen -» 4-protiocyclen, /tcycijc = 1.1 X 108 s-1. Reactions of 1,7-dipro
tiocyclen with H3O

+ or OH- are diffusion controlled. 
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